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Ah&act-This paper examines the factors affecting the dynamics and mass loss of ablating bodies 
during high-velocity motion. The dynamics and ablation of the body are interdependent since the rate of 
mass loss depends on the velocity and since the deceleration is dependent on the ratio of mass to drag 
area (W&DA) which may change due to loss of mass and change of shape. The initial kinetic energy of 
the body decreases due to both a loss of mass and a loss of velocity. The relative rates of mass loss and 
velocity loss depend on the “efficiency” with which the energy lost due to fluidynamic drag is returned 
to the body and absorbed in the ablation process. 

The classic meteor case, where the flow is assumed to be of the free-molecule type with constant 
heat-transfer and drag coefficients, is reviewed and presented in terms of genera1 dimensionless 
parameters which allow application to cases other than that of meteor atmospheric entry. This solu- 
tion indicates a finite mass remaining after the deceleration, the magnitude of the mass relative to the 
initial mass depending on the “efficiency” described above. 

In general, cases with variable heat-transfer and drag coefficients require numerical machine 
solutions (now in progress). However, analytic solutions for certain cases are possible and are 
presented in this paper. An analytic solution is obtained for the specific variation of the heat-transfer 
coefficient corresponding to a sphere with laminar convective heating in hypersonic flight at a constant 
altitude. In this case, the increase of dimensionless heat-transfer coefficient due to decreasing body size 
(thus effectively increasing the “efficiency”) can result in a complete loss of mass during the deceleration 
process. 

For both this case and the meteor case, the velocity variation during the major part of the mass loss 
differs only slightly from that for a body with an unchanging ballistic coefficient (m/CnA). This 
approximation is used to formulate the analytic solution of a case which corresponds to the laminar 
convective heating of a sphere in hypersonic re-entry-i.e. a large slow meteor or fireball. Due to the 
dominant effect of the decrease in heat-transfer coefficient with increasing fluid density (thus effectively 
decreasing the “efficiency”), the rate of mass loss is reduced and the tinal mass is appreciable com- 

pared to the initial mass. The analytic results are compared with two well-observed fireballs. 
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NOMENCLATURE 

cross-sectional frontal area of body; 
aerodynamic drag coefficient ; 
initial value of drag coefficient; 
drag-coefficient ratio = CD/CD,; 
dimensionless heat-transfer coefficient ; 
initial value of heat-transfer coefficient; 
ratio = CHH~/(CH,H); 
characteristic dimension of body, chang- 
ing dimension of body; 
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initial body dimension; 
dimensionless body size; 
base of natural logarithms; 
altitude; 
effective heat of ablation; 
initial value of H; 
luminous intensity; 
mass of body; 
initial mass of body; 
dimensionless mass ratio = rnlmi; 
geometry parameter, see equation (6); 
heat-transfer rate to body; 
velocity of body; 
initial velocity of body; 
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dimensionless velocity ratio = ujui; 
distance along path. 

symbols 
reciprocal of density scale height 
(a = d Inpidh); 
dimensionless mass of air encountered 

per unit cross-sectional area = 
h/(mCDA)i; 
dimensionless factor = CHi$/(2Cni Hi); 
atmospheric density; 
atmospheric density at sea level; 
density ratio, p,‘ps~; 
flight path angle with respect to local 
horizontal (positive for descent, negative 
for ascent) ; 
luminous efficiency. 

I. INTRODUCTION 

FOR MANY years ballisticians have been con- 
cerned with the motion of bodies in the Earth’s 
atmosphere-bodies of constant shape, size, and 
mass. With the advent of higher flight speeds 
with large rates of aerodynamic heating, the 
body may suffer a loss in mass due to surface 
ablation and a consequent change in shape and 
size. This effects a change in the ballistic co- 
efficient with a consequent change in the body’s 
dynamics and a corresponding change in the 
subsequent aerodynamic heating and mass loss. 
This coupling between the dynamics and ablation 
introduces a number of complications into the 
solution of the equations for the dynamics and 
mass loss. While machine solutions are generally 
necessary, analytic solutions have been possible 
in a few cases. Notable among these is the case 
of a body in a free-molecule flow (the typical 
meteor case) which is simplified by the lack of 
dependence of the aerodynamic drag and heat- 
transfer coefficients on the size and shape of the 
body. The solution to the meteor problem was 
first obtained by Hoppe [l] and Levin [2]. As 
Bronshten [3] has recently pointed out, larger 
meteoric bodies penetrate deeper into the 
atmosphere and consequently into the continuum 
flow regime. 

In this paper, the drag and heating relations 
are developed in a general form and analytic 
solutions for certain cases are presented. 

II. ANALYSIS 

Aerodynumic heating and ablation 
The heating rate to the body can be expressed 

as 

(7 :-_ CHA 4 p$ * f1! 

where CH is a dimensionless heat-transfer co- 
efficient and is the fraction of the kinetic energy 
of the air (relative to the body) intercepted b! 
the body which reaches the body surface as heat. 
The rate of mass loss due to ablation may be 
approximated by the use of the “effective heat of 
ablation”, H, which absorbs the effects of the 
various factors affecting the interaction between 
the flow about the body and the body surface. 
This is defined as 

dm Y 
dt H 

where y in each of these equations is the heating 
rate which a non-ablating body would experience 
under the same flight conditions. The effects of 
the ablation in sometimes reducing the heat input 
is absorbed in H. The rate of mass loss is then 

dm CHA 

H 
-~~ g pu”. 

dt 
( 3) 

It is now useful to introduce a new independent 
variable, the mass of air encountered per unit 
frontal area during the flight (made dimension- 
less through division by the initial ballistic 
coefficient) 

It is also convenient to introduce the di- 
mensionless parameters 

IYI 
/ii = 

mi 

- CD 
CD = ci. 
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A=$ 

I=2z& 
z 

Then equation (3) becomes 

The resulting mass-area ratio is 

;=;p,D 

and the relation between mass and mass-area 
ratio is 

9rr m3 
m=f@ 2 * 

0 
In general, for other geometric shapes, the mass 
is proportional to a power of the changing 
dimension 

fi = ij” (5) 

and the mass-area ratio is directly proportional 
to the changing dimension 

The dimensionless drag and heat-transfer 
coefficients may vary appreciably during a body’s 
flight-the variation being due to both changes 
in the flow regime and in the shape of the body. 
Furthermore, the effective heat of ablation, H, 
will change with both the flow regime and the 
heating rate. Figure 1 shows schematically how 
these parameters may vary with altitude [8]. 
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FIG. 1. Schematic variation of the dimensionless heat- 
transfer and drag coefficient ratios. 

Body geometry 
We shall consider a body of uniform density 

and arbitrary geometry having a characteristic 
dimension, D, which varies due to ablation. For 
example, a randomly spinning sphere undergoing 
ablation will suffer a decrease in diameter. Its 
mass is 

and its frontal area is 

The deceleration experienced by the body may 
be expressed in terms of the aerodynamic drag 
coefficient 

A=;D% 
4 

-g+pu2 

+i - 
-_=D 
A ’ 

Thus the mass and area are related 

2 = An/(n-1) 

and 
fin fii= -= . 0 A 

(6) 

These relations evolve from the fact that 
ablation occurs on the forward-facing surfaces 
and is approximately proportional to frontal 
area [see equations (3) and (4)]. Values of the 
exponent n are given in Table 1 for various 
simple geometries. 

Table 1 

n Geometry 

1 Rectangular solid moving 
normal to one face, or 
cylinder moving axially 

2 Cylinder moving normal 
to axis 

3 Spinning sphere, or cone 
moving axially 

- -. 

Deceleration 

(7) 

H.M.-4R 
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This equation neglects any gravitational accelera- 
tion which, for the velocity regime being con- 
sidered, is negligible compared to that due to 
aerodynamic drag. Writing this equation with 
(G) as the dependent variable 

d(G) GA 

dt = -m pu3 

and introducing the dimensionless variables 
gives 

dzi’ Co/i _. 

dfl mU* (8) 

For a constant ballistic coefficient, C~k/fi -2 1, 
this equation can be integrated directly to 
give 

In G2 = ~ 11 
or 

U = exp [- A/2] (9) 

This will not be recognized as the familiar 
solution for ballistic re-entry into an isothermal 
atmosphere [4, 51 when it is noted that 

In the case of motion at a constant altitude, 
fl = px/(m/C~,4), i.e. fl is directly proportional 
to x, the distance traveled. It is perhaps useful at 
this point to develop the significance of the 
parameter fl = j pu dt/(m/CoA)i, which is the 
ratio of the mass of gas encountered by the body 
per unit frontal area in ratio to the body’s 
(initial) mass per unit drag area. As indicated by 
equation (9) the velocity has been reduced to 
about 61 per cent of its original value when 
fl = 1. At fl = 2, the velocity has been reduced 
to I/e of its original value. This parameter can 
be considered qualitatively as a dimensionless 
mean free path. A non-ablating body can 
effectively penetrate a gas mass equivalent to a 
value of /1 somewhat greater than unity (say 
four or five). However, in the present case, we 
are concerned with a body whose size and mass 
are varying due to ablation and the integration 
of equation (8) can only be accomplished if these 
variations are taken into account. Combining 
the variations in mass and area by means of 
equation (6) gives 

and equation (8) can be expressed as 

In general, numerical integration [with simul- 
taneous solution of equations (4) and (S)] is 
necessary; however, an analytic solution is 
possible for the case where CH/(CDH) is constant. 
This is described in the next section. 

-- 
Analytic solution for constant CHICK 

While considerable variation in the heat-trans- 
fer and drag coefficients and in their ratio can 
occur if the body moves through widely different 
regimes of gas density and body velocity or if the 
body suffers large changes in size and shape, 
there are a number of occasions where a solu- -- 
tion for constant CI~/CD is useful. The meteor 
case is an example-small bodies decelerating in 
the upper atmosphere in the free-molecule flow 
regime. An analytic solution for this case was 
first obtained by Hoppe [l] and Levin [2] and 
will be presented here in terms of the general 
parameters, + and fl. 

Eliminating the variable -4 between equations 
(4) and (8) gives 

d lnrti ?% ~~~~ _= 
due ’ CT’ 

(11) 

Providing the combination of parameters on the 
right-hand side of this equation is constant (i.e. 
_- 
CH/CD = l), direct integration is possible and 
gives 

In rii == -- +(l 9) 
or 

nl = exp [ .-~- 4 ( I S)]. (12) 

It is interesting to note that, for this case, the 
mass variation is dependent only on the velocity, 
the initial velocity, and the parameter 4. Equa- 
tion (12) is shown graphically in Fig. 2 (for 
convenience 4/n is used and the curves shown 
correspond to n = 3) and it will be noted that a 
finite mass remains at the end of the deceleration 

fif = exp --f$. 

Inserting equation (12) into equation (10) gives 
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FIG. 2. Variation of mass with velocity for constant -- 
C&D (?t = 3). 

or in integral form 

’ exp [(4/n) ii”] dPs 
A 

- 
s 2-S 

= exp [#n] 
s 

CodA. 

1 0 

With the additional assumption of constant drag 
coefficient (co = I), this can be integrated to 
yield 

_4exp(+/n)=E(i)--E(fti2) (13) 

where m( ) is the exponential integral 

E(x) = 
X exp (x) CLX 

s x * 
-cc 

While equations (12) and (13) are applicable -- 
only to those cases where c,&,, = I.0 (e.g. the __, - 

FIG. 4. Variation of mass-velocity ratio with A for 
constant Z/G (fl = 3). 

meteor case where CT = Co = 1.0 because of 
free-molecule flow or the case of a body such as 
a hemisphere-cylinder moving at a constant 
altitude), the results are qualitatively similar to 
those for more complex cases. Because of this, 
they will be examined in some detail so as to give 
a physical feeling for the processes occurring and 
so as to provide a standard of comparison. 

The variations of velocity and of mass with the 
parameter A are shown in Fig. 3 for several 
values of d/n. It is seen that as 4/n increases, the 
deceleration and mass loss are shifted to smaller 
values of A. For 4/n = 0, there is no mass loss 
and the velocity variation reduces to equation (9). 
The variation of the mass-velocity ratio is shown 
in Fig. 4 and it is seen that for small values of 
+ the velocity loss predominates while the larger 
values of I$ result in a relatively large mass loss 
before the deceleration becomes appreciable. It 
will be remembered that + = CH&/(~CQ&) is 
essentially the product of two ratios: C&Q 

00001 0001 001 01 10 10 

A 

FIG. 3. Variation of velocity and mass with A for constant -- 
C&D (n = 3). 

‘O 7 
__- 

I 
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is the fraction of the drag energy which reaches 
the body as heat, and (u,2/2)/Ht is the ratio of 
the specific kinetic energy initially possessed by 
the body to the energy necessary to ablate it. 
The product is thus essentially a ratio of the 
energy available for ablation to that required for 
ablation and can be considered as an efficiency of 
ablation. For high ablation efficiencies, mass loss 
tends to be the dominant process; for low 
efficiencies, deceleration is dominant. 

Perhaps the best physical feeling for the 
relative importance of these competing processes 
is realized from Fig. 5 which presents lines of 
constant mass ratio and velocity ratio in the 
4-A plane. In this plane, the process proceeds 
along a horizontal line-i.e. a constant value of 
4. For very small values of 4 there is seen to be 
only a small mass loss with a velocity variation 
essentially the same as the solution for constant 
m/CDA, indicated by the broken vertical lines at 
the bottom of Fig. 5. At larger values of 4, the 
mass loss becomes more severe with a consequent 
greater deceleration. For still larger values of 
c#, essentially all of the mass loss takes place 
before any appreciable deceleration occurs ; 
thereafter, deceleration is severe and takes place 
in a very small distance-i.e. in a small range of 
A. 

At large values of + where severe mass loss 

MAXIMUM LUMINOSITY 

FIG. 5. Solution for constant CHICD. Lines of constant 
mass ratio correspond to n = 3. 

occurs before any appreciable deceleration, 
considerable simplification in the solution results. 
Thus for 4 $ 1, fl < 1, 

Ci N- exp[ I/J/~]. i (14) I 

During the major deceleration where lfi ap- 
proaches its limiting value (5 --i exp -cl, 
22 --f 0) 

tlj) 

These limiting solutions are apparent in Fig. 5 at 
the upper left where the lines of constant mass 
(shown for n = 3) have a slope of minus one. 
In this region it will be noted that the body can 
only penetrate a gas mass corresponding to 
rl = l/($/n). 

Equations (12) and (13) are frequently applied 
to the meteor case for the estimation of lumi- 
nous intensity variation [2]. 

(16) 

where T is the so-called luminous efficiency.* 
Here we will consider only the conditions for a 
maximum intensity. Differentiating equation (16) 
with respect to fl and equating to zero gives 

5dInG’ ldp d In tii __ ___ 
2 dfl 

f - -. .+ .__-_ = 0. 
,J dA dil 

For the case of meteor atmospheric entry 

dp P ._ = 
d/l .I 

and the other terms may be evaluated from 
equation (12) and (13). The resulting condition 
for maximum absolute luminosity is [6] 

A _ exp [- 9/n (1 .: _Qzi] 
5/2 + (n - 1) (din) u2 

‘IL (a’ ______~ 
- 5/2 f (n ~- 1) (b/n) 22’ (17) 

For low values of (6, this simplifies to 

fl = 0.4 and U = 0.818 
-- 

*The luminous efficiency can be assumed to be a 
function of velocity; this modifies slightly the conditions 
for maximum luminous intensity. 
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and for large values of + 

+l II I.07 and 6 N 0.34 (for n = 3). 

The condition for maximum luminous intensity 
is shown in Fig. 5 by the broken line. 

Analytic solution for G = (b)-lj2 
In the case of convective laminar ablation of a 

sphere moving at high velocity in a gas of uni- 
form density (e.g. motion at constant altitude), 
the heat-transfer coefficient increases as the size 
of the sphere decreases: 

G = (Q-112 

or 
z = (/$-l/6. 

The drag coefficient is assumed to remain 
constant. Then equation (11) becomes 

d In fi 
diis 

= 4 (fi)-11s 

which when integrated 

Kl J’ 

yields 

fi= l-$(l-fi2) 6. 1 (18) 
Just as in the solution presented in the previous 
section, the mass ratio is seen to depend only on 
the parameter 4 and the velocity ratio. It will 
be noted that this relation results in a limiting 
mass ratio for I$ < 6 

For 4 > 6, the mass ratio becomes zero at a 
velocity ratio 

lim ii = 
yl( > 

12 
WI-PO 4' 

The velocity variation may be determined by 
substituting equation (18) in equation (8) 

d/l 
1 -$(l-22) 

I 

2 
--_-= 

d In zis 

and integrating 

A 1’ 

+A=]~[1 -$(l - zis)]2dzi? 

0 1 

The result is 

A= 1-g 2(-lnfj2)+$ 1-g (l-9) ( 1 ( 1 
+ $1 - 9). (19) 

The results of equations (18) and (19) are shown 
in Fig. 6 in the same format as the previous case 
in Fig. 5. Comparison of these two figures 
indicates that the increase of heat-transfer co- 
efficient due to decreasing size has an appreciable 
effect only near the end of the motion where it 
results in slightly smaller values of the di- 
mensionless depth A. Furthermore, while a 
finite mass always results in the previous case, 
here a zero mass can result for the larger values 
of I$ (see above). 

The conditions for maximum luminosity for 
this case (shown by the broken line in Fig. 6) are 

’ = (5/2) EP6 + (l/2)+ zi2 (20) 

100 

IO 

d 
;j- I-O 

0.1 

0.01 

UM LUMINOSITY 

0001 001 04 I.0 IO 

FIG. 6. Solution for G/c= l/l/D. Lines of constant 
mass ratio correspond to n = 3. 
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For small values of $I this simplifies to 

A-O.4 and 6~0.818 

just as in the previous case. For large values of 4 

&I 21 1.09 and $I N 0.3 

which differs only slightly from the previous 
case. 

Approximate analytic solution for G = k/ 

For the two previous cases, an examination of 
Figs. 5 and 6 indicate that the major part of the 
mass loss occurs before the velocity has deviated 
appreciably from the simple solution for 
KZ/(CDA) = I-i.e. a velocity variation given by 

6 = exp [- A/2] (9) 

This suggests the use of this velocity variation 
in approximate solutions for more complicated 
variations of the heat-transfer and drag co- 
efficients. A case of interest is the convective 
laminar ablation of a sphere in atmospheric 
entry where 

i.e. tends to increase with mass loss and to 
decrease with increasing gas density. The value 
of k in this expression corresponds approxi- 

mately to dil at the point where G = 1. Thus 
k depends on, for example, the body size, the 
angle of atmospheric entry into the atmosphere, 

etc. With this variation of CH and with the 
velocity variation given by equation (9), equa- 
tion (4) becomes 

and integrating yields [7, 81 

I 
’ (12) 

where the integral (shown in Fig. 7) may be 

FIG. 7. Value of the integral d.1. 

0 

approximated for fl small (say 11 c-1 0.02) as 

.l 

exp (--/I) 

0 

The resulting mass variation, along with the 
assumed velocity variation is shown in the 
4 ~- fl plane in Fig. 8. For this comparison, /i 

was chosen as 0.005, corresponding to CH =- 1 at 
an altitude of about 100 km. It is apparent that 
the effects of the decrease in the dimensionless 
heat-transfer coefficient due to increasing gas 
density dominate and result in appreciably 
lower rates of mass loss than in the previous 
cases discussed. Conditions for maximum 
luminosity for this case correspond to 

5fl -+_ k@E--^) ’ i1 : 1 
2_/m 

(22, 

and are shown by the broken line in Fig. 8. For 
small +, equation (22) simplifies to 

LI = 0.2 and U .=: O-905 

and for large $ to 

+4/l 21 97 and tfi r= 0.27 
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A 
-- 

FIG. 8. Solution for CH/CD = k/z/Dl/A (k = OGOS). 
Broken line shows conditions for maximum luminosity. 

Lines of constant mass ratio correspond to it = 3. 

If the results of Fig. 8 are presented in terms 
of the average ablation efficiency from 0 to A, 

instead of the initial value (4/n), they become 
almost identical to the results for constant -- 
CH/CD shown in Fig. 5 for the region of major 
mass loss and major deceleration. This indicates -- 
that the analytic results for constant CH/CD may 
also be used as an approximation for cases where 
the ratio varies appreciably. For the case of a -- 
body with variable CHICD, the path of the body 
in the +I plane is no longer a horizontal line- 
but rather a line following the variation of the -- 
average value (from 0 to A) of (#/~)(CH/CD) 
with A. This is illustrated by the arrows in 
Fig. 9. 

While this approximation will obviously fail 
in the final stages of the deceleration and mass- 
loss processes, it is useful for the tentative 
evaluation of cases where large variations of -- 
CHICD are expected. Machine computations are 
underway for various types of CH and CD 
variations in order to test the validity of the 
approximation. 

0.1 IO IO 

A 
-- 

FOG. 9. Approximate general solution for variable C&D. 
Broken line shows conditions for maximum luminosity. 

Lines of constant mass ratio correspond to n = 3. 

III. APPLICATION TO LARGE METEORS 
-- 

The meteor analysis for constant CH/CD pre- 
sented in the previous section has been applied 
by a number of authors to meteor data for the 
determination of atmospheric characteristics, 
high-velocity heat transfer, etc. [2, 3, 61. In a 
previous paper [6], the author demonstrated 
that several unique features of the results shown 
in Fig. 6 could be exploited to determine meteor 
characteristics : (1) the initial variation of 
velocity with altitude is relatively independent of 
4 and can be used to determine the meteoroid’s 
initial ballistic coefficient (~/CD&, and (2) the 
velocity ratio at which the maximum luminous 
intensity appears is indicative of the value of C/J, 

For larger meteoric bodies, where variation in 
- -. 

the ratio CHICD 1s to be expected due to changes 
in flow regime and changes in the ablation 
mechanism, the approximate results indicated 
in Fig. 9 offer interesting possibilities. They 
indicate that the meteoroid’s initial ballistic 
coefficient may be determined by the velocity 
variation with altitude and that the average 

-- 
value of the ablation efficiency, ($/~)(CH/CD), 
may be determined approximately from the 
velocity at maximum intensity. 

Two recent well-observed meteors [9, lo] will 
be used as examples. Their velocity variation 
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with altitude, as determined photographically, 
is shown in Fig. 10. The arrows indicate the 
points of maximum luminosity. 

The initial variation of velocity with altitude 
may be used to determine the initial entry 
velocity and the ballistic coefficient. The initial 
variation of velocity may be approximated by 
[see equation (14)] 

Noting that, for atmospheric entry, the para- 
meter A is 

fj ,P CDA __- 
u msin8 

70 ii I I .I .~.._.~~__._._ _ ~.. 

4 5 6 7 8 910 12 14 161820 242832 

VELOCITY (KM/S) 

FIG. 10. Velocity variation with altitude for meteors. 

it can be seen that plotting ~2 vs p yields U: as the 
intercept and m/CDA from the initial slope 
(using the scale height, a-1 from a standard 
atmosphere [l l] and the measured value of the 
path angle, 19). This is shown for the two meteors 
in Fig. 11 and the resulting numerical values are 
indicated in Table 2. The determination of 
initial velocity and ballistic coefficient allows a 
representation in terms of the dimensionless 
parameters d and A, shown in Fig. 12. Com- 
parison with the analytical results in Fig. 3 
indicates good qualitative agreement with the 
theory. 

The location of the points of maximum FIG. 11. Meteor data plotted to determine initial velocity 
luminous intensity for these bodies on the +-A and ballistic coefficient. 

00 , 

ALTITUDE 

(KM) 70 1~ 

60 / 

50 I- 

40 

Time xlelocity Altitude Angle 19 !-H ,CoA 1 
Meteor (s) (km/s) (km) (deg) Comment (g,‘cm”) 

-__- __--__ _~__..__ 
Pribram [9] 0 20.887 88.594 43’ Appeared at 97.8 km 76.2 

0.85806 20.864 76.289 
0.85602 20.860 76.318 
1.73230 20.838 65.837 
2.49383 20.773 52.970 
2.69203 20.717 50.164 Broke up at about 40 km 
3.06758 20.459 44.858 

Meanook [ 101 0 17.42 67.59 60.2 
1.0 16.58 52.71 Flare at 0.8 s 5.61 
1.4 15.45 47.12 
1.8 13.10 42.11 Broke in two at 1.75 s 
2.0 11.28 39.98 
2.2 9.16 38.21 Flare at 2.08 s 
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map may be accomplished both from the values 
of d and (1 at that point. This is shown in Fig. 
13. For both the Pribram [9] and Meanook [IO] 
meteors, the corresponding values of zi’ and LI are 
in good agreement with the analytical results 

-- 
and allow determination of (#/~)(C&D). There 
is seen to be a large difference in the resulting 

values of (&.z)(~/~), a difference which is 
probably due to diff‘erences in body material. 

The Pribram meteor [9] is a classic case- 
since it is the only large meteor observed photo- 
graphically of which pieces were recovered after 
impact on the earth. The material was deter- 
mined to be a chrondrite stone having a density 
of about 3.5 g/ems. Using the determined 
ballistic coefficient, (m/c& = 76.2 g/cm2 and 
assuming a spherical shape and a drag co- 

__ .._ 

-I 

7 1 
PRIBRAM i 

i ARROWS INDICATE MAX LUMINOSITY 
I 4. 

FIG. 12. Meteor data in terms of P and A. 

0001 O-01 0.1 1.0 IO 

A 

FIG. 13. Meteor results compared to the general solution. 

efficient CD = 1 yields an initial mass of 64 100 g 
and a diameter of 32.7 cm. A total mass of about 
7000 g was recovered and it was suspected [9] 
that one of the larger pieces was not found. It 
thus appears that more than 10 per cent of the 
original body survived atmospheric entry. Since 
the mass at maximum luminous intensity is about 
one third of the initial mass (see Fig. 13) it 
appears that the path of the body in the +-A 
plane must have been downward with a slope 
close to minus one-as indicated by the 
arrow in Fig. 13. This trend can be rationalized 
by the expected reduction of the convective 
component of the heat-transfer coefficient with 
increasing gas density and of the radiative 
component with decreasing body size [8]. 
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R&sum&-Cet article examine les facteurs affectant la dynamique et la perte de masse de corps pre- 
sentant une ablation pendant un m3uvement a grande vitesse. La dynamique et l’ablation du corps 
sont interdependantes, puisque la vitesse de perte de masse depend de la vitesse et puisque la decelera- 
tion depend du rapport de la masse au produit de la surface du maitre-couple par le coefficient de 
trainee (m/C&), qui peut changer a cause de la perte de masse et du changement de forme. L’energie 
cinetique initiale du corps decroit a la fois a cause de la perte de masse et de la perte de vitesse. Les 
vitesses relatives de perte de masse et de perte de vitesse dependent du “rendement” avec lequel 
l’energie perdue due a la trainee aerodynamique est retournee au corps et absorbee dans le processus 
d’ablation. 

Le cas classique du meteore, ou on suppose que l’tcoulement est du type moleculaire libre avec 
des coetlicients constants de transport de chaleur et de trainee, est passe en revue et present5 en 
fonction de paramttres sans dimensions qui permettent l’application a des cas autres que celui d’une 
entree d’un mSt6ore dans l’atm,sphere. Cette solution indique qu’une masse finie reste apres la 
d&ceMration, la grandeur de la masse relative a la masse initiale dependant du “rendement“ decrit 
ci-dessus. 

En general, les cas avec des coefficients variables de transport de chaleur et de trainee demandent 
des solutions numeriques a la machine (actuellement en cours). Cependant, des solutions analytiques 
pour certains cas sont possibles et sont present&es dans cet article. On obtient une solution analytique 
pour la variation specifique du coefficient de transport de chaleur correspondant a une sphere avec un 
echauffement par convection laminaire en vol hypersonique a altitude constante. Dans ce cas, l’aug- 
mentation du coefficient sans dimensions de transport de chaleur due a la diminution de la taille du 
corps (augmentant ainsi effectivement le “tendement”) peut aboutir a une perte complete de masse 
pendant le processus de deceleration. 

A la fois pour ce cas et le cas du meteore, la variation de vitesse pendant la majorite de la perte de 
masse differe seulement legerement de celle pour un corps avec un coefficient balistique (m/C,,A) 
invariable. Cette approximation est utilisee pour formuter la solution anaiytique d’un cas qui cor- 
respond a l’echauffement par convection laminaire d’une sphere dans la rentrte hypersonique-- 
c’est-a-dire un grand met&ore a faible vitesse ou une boule de feu. A cause de I’effet dcminant de la 
decroissance du coefficient de transport de chaleur avec l’augmentation de la densite du fluide 
(diminuant ainsi effectivement le “rendement”), la vitesse de perte de masse est reduite et la masse 
finle est appreciable comparee a la masse initiale. Les resultats analytiques sont compares avec deux 

boules de feu observees convenablement. 

Zusammenfassung-Diese Abhandlung untersucht die Umitande, welche die Dynamik und den 
Massenverlust von Kdrpem beeinflussen, wenn sich diese mit sehr hoher Geschwindigkeit in der 
AtmTsphlre bewegen und abschmelzen. Die Dynamik und das Abschmelzen des Korpers stehen 
untereinander in Beziehung, weil der Massenschwund von der Geschwindigkeit und die Verziigerung 
von dem Verhlltnis Masse zu Widerstandsfllche (m/C’,A) abhgngt, denn der den Widerstand 
verursachende Querschnitt kann sich sowohl durch Veranderung in der Form als such durch den 
Massenverlust andern. Die bezogenen Werte von Massenschwund und Geschwindigkeitsabnahme 
sind durch den “Wirkungsgrad” bedingt, mit welchem die durch den Striimungswiderstand verloren- 
gegangene Energie wieder in den KGrper zurtickgefiihrt und durch den Abschmelzprozess absorbiert 
wird. 

Der klassische Fall des Meteors, wo man eine Stromung freier Molekiile mit konstanter Warme- 
tibergangs- und Widerstandszahl annimmt, wird iiberpriift und in Termen mit gebrauchlichen dimen- 
sionslosen Parametem wiedergegeben. Damit ist die Anwendung auf Fllle, die anders geartet sind als 
das Auftreffen eines Meteors auf die Atmosphare, moglich. In dieser Losung treten eine endliche 
Masse auf, die nach dem Abbremsen iibrigbleibt und der Betrag der Masse bezogen auf die An- 
fangsmasse, welche von dem oben bezeichneten “Wirkungsgrad” abhlngt. 

Im allgemeinen verlangen Fllle mit veranderlichen Warmetibergangszahlen und Widerstands- 
koeffiziemen numerische tiisungen durch Rechenmaschinen (jetzt im Fortschreiten begriffen). Es 
sind iedoch such analvtiscne Losungen fiir bestimmte Falle miiglich und hier aufgefiihrt. Fur die 
spezifische ,&nderung der Warmeiibergangszahl, die bei einer durch laminare Konvektion geheizten 
Kugel im Hyperschallflug in konstanter Hohe auftreten wiirde, ergibt sich eine analytische Losung. 
In diesem Fall kann das Anwachsen der dimensionslosen Warmetibergangszahl, verursacht durch 
die abnehmende G&se des Versuchskorpers (der “Wirkungsgrad” wird erhliht) einen viilligen 
Massenschwund beim Verzogerungsvorgang ergeben. 

Fiir diesen Fall, wie such fiir den des Meteors, unterscheidet sich die Anderung der Geschwindigkeit 
wahrend des gr&sten Teils des Massenschwundes nur unbedeutend von der fiir einen KGrper mit 
einem unver&nderlichen ballistischen Koeffizienten (m/C&). Diese Naherung wird dazu verwendet. 
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eine analytische Liisung fur einen Fall aufzustellen, der dem Wiedereintritt einer Kugel in die Atmos- 
phlre entspricht, die dabei mit laminarer Konvektion beheizt wird und sich mit Hyperschallgeschwin- 
digkeit fortbewegt, d.h. ein grosser, langsamer Meteor bzw. eine Sternschnuppe. 

Wegen des vorherrschenden Einilusses der Abnahme der Warmetibergangszahl bei steigender 
Dichte der Atmosphare (der “Wirkungsgrad” wird verringert), wird die Massenverlustsrate herab- 
gesetzt und die noch vorhandene Masse mit der Anfangsmasse in einer Abschltzung verglichen. 

Die analytischen Ergebnisse werden mit zwei genau beobachteten Sternschnuppen verglichen. 

AHHOT~QEW-B AaHHOti CTaTbe paCCMaTpliBaIOTCR (PaKTOpbI, BJIHHIO~He Ha ,lJHHaMElKy EI 

nOTep~MaCCbIa6nIlpyIolllnxTennpHABHmeHHHC6OnbLUOtrCKOpOCTbH).~ElHaMHKaCI a6nnum-r 
TejIa B3aHM03aBHCHMbI, IIOCKOJIbKy HHTeHCHBHOCTb IIOTepM MaCCbI 3aBHCIIT OT CKOpOCTH I4 

IIOCKOJIbKy TOpMOHEeHIle 3aBMCHT OT OTHOIIIeHMR MaCCbI K lIJIOIQaAH COIIpOTHBJIeHBFI (m/Cd), 

KOTOpaR MOHCeT EZ3MeHRTbCR E13-3a IIOTepH MaCCbI II E13MeHeHMR (POpMJL OTHOCATenbHaR 

ZlHTeHCHBHOCTb IIOTepEi MaCCH H CKOpOCTM 3aBMCHT OT W$.$eKTHBHOCTH~>, C KOTOpOti IIOTepR 

3HeplWll 38 CqeT rH~pO/JHHaMH~eCKOrO COIIpOTMBJIeHHR BO3BpaQaeTCH K TeJIy I4 IIOrJIO- 

maercn np~ a6nnnun. 
IC~accnsecnmn cnysat uereopa, me npeAnonarator, 9TO IIOTOK RBJIReTCR CBO6OAHO- 

MOJIeKyJIRpHbIM IIpH IIOCTOJIHHMX K03#l+f~HeHTaX TeIIJrOO6MeHa II COIIpOTHBJIeHklH, IIe- 

PeCMOTpeH II IIpeACTaBJIeH B BHAe 061q~ix 6e3pa3MepHbIX IIapaMeTpOB, KOTOpbIe II03BOJIFIIOT 

IIpEiMeHFlTb AaHHbIt aHaJIll3 AJIH ApyrHX CJIyqaeB, a He TOJIbKO AJIR CJlyYaR BXOlKAeHElFl 

MeTeOpaB aTMOCI$epy.3TOpeIIIeHMeAaeT KOHeqHyIO MaCCy,OCTaBIIIylOCHIIOCJIe TOpMOFKeHMR, 

BeJIEWIHy MaCCbI OTHOCIlTeJIbHO HaqaJIbHOii MaCCe B 3aBHCHMOCTM OT BbIIIIeyKa3aHHOfi 

G@jjeKTMBHOCTH~). 

B o6meM, CJIy'4aM IIepeMeHHbIX K03~$4~HeHTOB TemOO6MeHa II COIIpOTHBJIeHHi4 Tpe6yIOT 

YHCJIeHHbIXpeIIIeHki~Ha3JIeKTpOHHO-C~eTHOi%MaIIIllHe(B HaCTOH~eeBpeMR3TRBbIYIWIeHHH 

IIpOI13BO~RTC2-I). OAHaKO, aHaJIHTWieCKHe peUIeHHR HeKOTOpbIX CJIyqaeB B03MOH(HbI H IIpeA- 

CTaBneHbIBAaHHO~CTaTbe.nOJIyYeHOaHanllTElreCKOepemeHHeAnRE13MeHeHHRKO3~~H~meHTa 

TeIIJIOO6MeHa, AJIR UIapa IIpll JIaMHHapHOM KOHBeKTIlBHOM HarpeBe ~Ipll lWlIep3ByKOBbIX 

IIOjIeTaX C IIOCTOHHHOti BbICOTOfi. B 3TOM CJIyqae yBeJIHYeHEle 6e3pa3MepKOrO KO3@l#H~HeHTa 

TeIIJIOO6MeHa3aC~eTyMeHbLIIeHHHpa3MepaTeJIa(TaKHM 06pa3oM,sHawiTenbHOeyBenkiseH~e 

@I~eKTHBHOCTH)) MOHFeT IIpHBeCTR K IIOJIHOi IIOTepe MaCCbI IIpI4 TOpMOWeHHH. 

KaK B 3~oh1 cnysae, TaK II B cnysae MeTeopa, H3MeKeHne cK0p0c~~ B Teseme ocHoBHor0 

nep~o~anoTepm~accbITonbKocnerKaoTnHsaeTc~o~3Toro~ep~o~a~~~Te~acKe~3~eH~~~e~c~ 

6aJIJIHCTHYeCKHM KO3@@fqHeHTOM (m/CDA). 3TO npH6nMaeHHe ~pHMeHlUlOCb AJIH @OpMyJIEI- 

~oBaHAXaHaJIMTll'lecKoropeuIeHIlR~~~C~y~a~,COOTBeTCTByIo~erO~aMElHapHOMyKOHBeKT~- 

BHoMy HarpeBy IUapa IIpll BO3BpalqeHHH B aTMOC@epy C IWIIep3ByKOBOti CKOpOCTbIO T.e. 

0yeKb Mei[neKKoro MeTeopa. 3a C=leT OCHOBHOrO BJIElRHIlfi yMeHbIIIeHRR KO3,$@Ef~HeHTa 

TeIIJIOO6MeHa IIpH yBeJIIlWIBalOQetCR IIJIOTHOCTH IIOTOKa (TaKLIM 06pa3oM, 3HaYMTeJIbHO 

yMeHbUIaIOQeticH ('3@@eKTHBHOCTHB) CKOpOCTb IIOTepll MaCCbI YMeHbIIIaeTCH, I4 KOHeYHaR 

MaCCa CpaBHHMa c KaqaJIbHOti. AHaJIHTHYeCKHe pe3yJIbTaTbI CpaBHeHbI C pe3yJIbTaTaMH, 

IIOJIyYeHHbIMEl AJIH AByX XOpOIIIO Ha6JIIOAaeMbIX MeTeOpOB. 


